

# HIGH FREQUENCY ULTRA PERFORMANCE OSCILLATOR SERIES "HFUPO" 80.0-220.0MHz

## **FEATURES**

- + Ultra Performance Oscillator for Low Cost
- + Low power consumption / Ultra low phase Jitter
- + Excellent long time reliability
- + Very tight frequency stability as low as ±10 ppm
- + Outstanding long term aging of ±5ppm after 10 years
- + LVCMOS/LVTTL compatible output
- + Standard housings: 2.5x2.0; 3.2x2.5; 5.0x3.2; 7.0x5.0mm
- + Express samples within 1 day ex works PETERMANN-TECHNIK
- + Pb-free, RoHS and REACH compliant / MSL1@260°C

## **APPLICATIONS**

- + SATA, SAS, Ethernet, 10-Gigabit Ethernet, SONET, PCI Express, video, Wireles
- + Computing, storage, networking, telecom, industrial control,
- + etc

## GENERAL DATA[1]

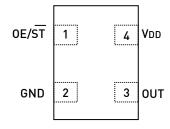
| PARAMETER AND CONDITIONS            | SYMBOL  | MIN.      | TYP. | MAX. | UNIT | CONDITION                                                                  |
|-------------------------------------|---------|-----------|------|------|------|----------------------------------------------------------------------------|
| FREQUENCY RANGE                     |         |           |      |      |      |                                                                            |
| Output Frequency Range              | f       | 80.000001 | -    | 220  | MHz  |                                                                            |
| FREQUENCY STABILITY AND AGING       |         |           |      |      |      |                                                                            |
| Frequency Stability                 | F_stab  | -10       | _    | +10  | PPM  | Inclusive of initial tolerance at 25 °C, and variations over               |
|                                     |         | -20       | -    | +20  | PPM  | operating temperature, rated power supply voltage and load                 |
|                                     |         | -25       | _    | +25  | PPM  |                                                                            |
|                                     |         | -50       | -    | +50  | PPM  |                                                                            |
| First year Aging                    | F_aging | -1.5      | _    | +1.5 | PPM  | 25°C                                                                       |
| 10-year Aging                       |         | -5        | -    | +5   | PPM  | 25°C                                                                       |
| OPERATING TEMPERATURE RANGE         |         |           |      |      |      |                                                                            |
| Operating Temperature Range         | T_use   | -20       | -    | +70  | °C   | Extended Commercial                                                        |
|                                     |         | -40       | -    | +85  | °C   | Industrial                                                                 |
| Storage Temperature Range           | T_stor  | -55       | -    | +125 | °C   | Storage                                                                    |
| SUPPLY VOLTAGE AND CURRENT CONSUMPT | ION     |           |      |      |      |                                                                            |
| Supply Voltage                      | VDD     | 1.71      | 1.8  | 1.89 | V    | Supply voltages between 2.5V and 3.3V can be supported.                    |
|                                     |         | 2.25      | 2.5  | 2.75 | ٧    | Contact PETERMANN-TECHNIK for guaranteed performance                       |
|                                     |         | 2.52      | 2.8  | 3.08 | ٧    | specs for supply voltages not specified in this table                      |
|                                     |         | 2.97      | 3.3  | 3.63 | ٧    |                                                                            |
| Current Consumption                 | IDD     | -         | 34   | 36   | mA   | No load condition, $f = 100 \text{ MHz}$ , $VDD = 2.5V$ , $2.8V$ or $3.3V$ |
|                                     |         | -         | 30   | 33   | mA   | No load condition, $f = 100 \text{ MHz}$ , $VDD = 1.8V$                    |
| OE Disable Current                  | I_OD    | -         | -    | 31   | mA   | $V_{DD}$ = 2.5V, 2.8V or 3.3V, OE = GND, output is pulled down             |
|                                     |         |           |      | 30   | mA   | V <sub>DD</sub> = 1.8 V. OE = GND, output is pulled down                   |
| Standby Current                     | l_std   | -         | -    | 70   | μΑ   | $V_{DD}$ = 2.5V, 2.8V or 3.3V, ST = GND, output is pulled down             |
|                                     |         | -         | -    | 10   | μΑ   | VDD = 1.8 V. ST = GND, output is pulled down                               |

## Note:

<sup>1.</sup> All electrical specifications in the above table are specified with 15 pF±10% output load at default drive strength and for all VDD(s) unless otherwise stated.



# **GENERAL DATA**<sup>[1]</sup> (continued)


| PARAMETER AND CONDITIONS      | SYMBOL   | MIN.              | TYP. | MAX. | UNIT | CONDITION                                                                                   |
|-------------------------------|----------|-------------------|------|------|------|---------------------------------------------------------------------------------------------|
| LVCMOS OUTPUT CHARACTERISTICS |          |                   |      |      |      |                                                                                             |
| Duty Cycle                    | DC       | 45                | -    | 55   | %    | f <= 165 MHz, all VDDs.                                                                     |
|                               |          | 40                | -    | 60   | %    | f > 165 MHz, all VDDs.                                                                      |
| Rise/Fall Time                | Tr, Tf   | -                 | 1.2  | 2    | ns   | 15 pF load, 10% - 90% VDD                                                                   |
| Output Voltage High           | VOH      | 90%               | -    | -    | VDD  | IOH = -6 mA, IOL = 6 mA, (VDD = 3.3V, 2.8V, 2.5V), IOL = 3 mA, (VDD = 1.8V)                 |
| Output Voltage Low            | VOL      | -                 | -    | 10%  | VDD  |                                                                                             |
| INPUTCHARACTERISTICS          |          |                   |      |      |      |                                                                                             |
| Input Voltage High            | VIH      | 70%               | -    | -    | VDD  | Pin 1, 0E or ST                                                                             |
| Input Voltage Low             | VIL      | -                 | -    | 30%  | VDD  | Pin 1, 0E or ST                                                                             |
| Input Pull-up Impedance       | Z_in     | -                 | 100  | 250  | kΩ   | Pin 1, 0E logic high or logic low, or ST logic high                                         |
|                               |          | 2                 | -    | -    | МΩ   | Pin 1, ST logic low                                                                         |
| STARTUP AND RESUME TIMING     |          |                   |      |      |      |                                                                                             |
| Startup Time                  | T_start  | -                 | 7    | 10   | ms   | Measured from the time VDD reaches its rated minimum value                                  |
| OE Enable/Disable Time        | T_oe     | -                 | -    | 115  | ns   | $f = 80 \text{ MHz}$ , For other frequencies, $T_oe = 100 \text{ ns} + 3 \text{ cycles}$    |
| Resume Time                   | T_resume | -                 | -    | 10   | ms   | In standby mode, measured from the time ST pin crosses $50\%$ threshold. Refer to Figure 4. |
| JITTER                        |          |                   |      |      |      |                                                                                             |
| RMS Period Jitter             | T_jitt   | -                 | 1.5  | 2    | ps   | f = 156.25  MHz, VDD = 2.5V, 2.8V or 3.3V                                                   |
|                               |          | -                 | 2    | 3    | ps   | f = 156.25  MHz, VDD = 1.8V                                                                 |
| RMS Phase Jitter (random)     | T_phj    | -                 | 0.5  | 1    | ps   | f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz                                    |
| EXCELLENT RELIABILITY DATA    |          |                   |      |      |      |                                                                                             |
| MTBF                          |          | 500 million hours |      |      |      |                                                                                             |
| Shock Resistance:             |          |                   |      |      | 1    | 0.000 g                                                                                     |
| Vibration Resistance:         |          |                   |      |      |      | 70 g                                                                                        |

Note: 1. All electrical specifications in the above table are specified with 15 pF  $\pm 10\%$  output load and for all VDD(s) unless otherwise stated.

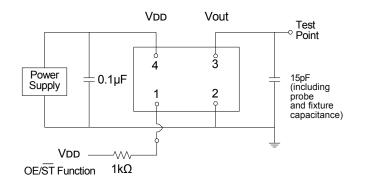
# PIN DESCRIPTION

| PIN | SYMBOL  |               | FUNCTIONALITY                                                                                                                                              |
|-----|---------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 1 0E/ST | Output Enable | H or Open <sup>[2]</sup> : specified frequency output<br>L: output is high impedance. Only output driver is disabled.                                      |
| 1   |         | Standby       | H or Open <sup>[2]</sup> : specified frequency output<br>L: output is low (weak pull down). Device goes to sleep<br>mode. Supply current reduces to I_std. |
| 2   | GND     | Power         | Electrical ground <sup>[3]</sup>                                                                                                                           |
| 3   | OUT     | Output        | Oscillator output                                                                                                                                          |
| 4   | VDD     | Power         | Power supply voltage <sup>[3]</sup>                                                                                                                        |

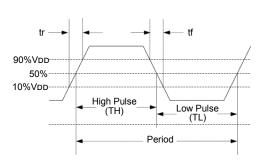
## **TOP VIEW**



#### Notes

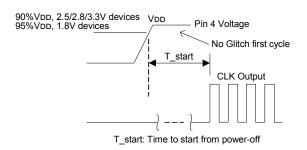

- 2. A pull-up resistor of <10 k $\Omega$  between OE/ ST pin and VDD is recommended in high noise environment.
- 3. A capacitor value of 0.1  $\mu F$  between VDD and GND is recommended.



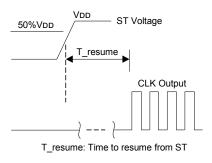



# TEST CIRCUIT AND WAVEFORM [4,5]

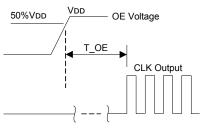
### FIGURE 1. TEST CIRCUIT




### FIGURE 2. WAVEFORM

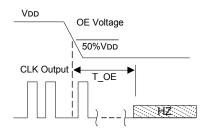



## TIMING DIAGRAMS [6,7]


## FIGURE 3. STARTUP TIMING (OE/ST MODE)



### FIGURE 4. STANDBY RESUME TIMING (ST MODE ONLY)




#### FIGURE 5. OE ENABLE TIMING (OE MODE ONLY)



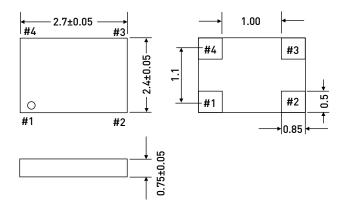
T\_OE: Time to re-enable the clock output

## FIGURE 6. OE DISABLE TIMING (OE MODE ONLY)

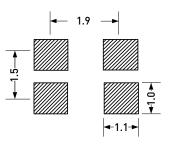


 $T\_OE$ : Time to put the output drive in High Z mode

#### Notes:

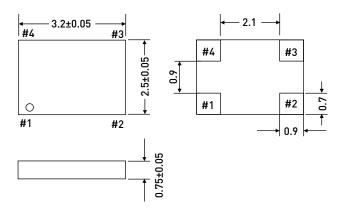

- Duty Cycle is computed as Duty Cycle = TH/Period.
- HFUPO supports the configurable duty cycle feature. For custom duty cycle at any given frequency, contact PETERMANN-TECHNIK.
- HFUPO supports no runt pulses and no glitches during startup or resume.
- HFUPO supports gated output which is accurate within rated frequency stability from the first cycle.



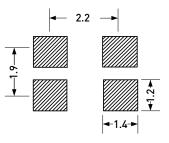

## **DIMENSIONS AND PATTERNS**

## PACKAGE SIZE - DIMENSIONS (UNIT:MM)

2.7X 2.4 X 0.75 MM (100% COMPATIBLE WITH 2.5X2.0MM FOOTPRINT)

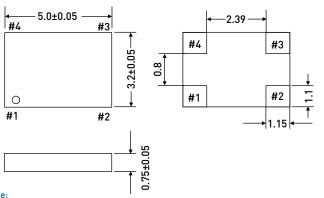



### RECOMMENDED LAND PATTERN (UNIT:MM) [9]

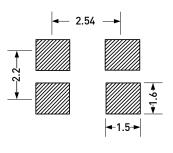



## PACKAGE SIZE - DIMENSIONS (UNIT:MM)

3.2 X 2.5 X 0.75 MM




## RECOMMENDED LAND PATTERN (UNIT:MM) [9]




### PACKAGE SIZE - DIMENSIONS (UNIT:MM)

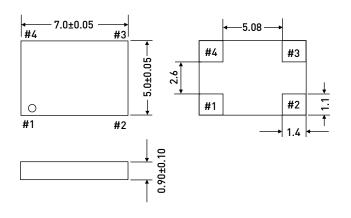
5.0 X 3.2 X 0.75 MM



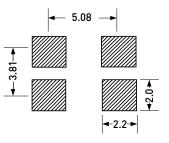
## RECOMMENDED LAND PATTERN (UNIT:MM) [9]



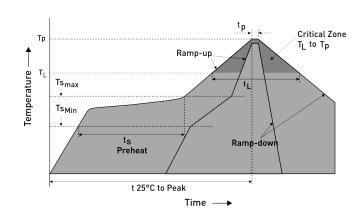
## Note:


8. A capacitor value of 0.1  $\mu F$  between VDD and GND is recommended.




## **DIMENSIONS AND PATTERNS**

## PACKAGE SIZE - DIMENSIONS (UNIT:MM)


7.0 X 5.0 X 0.90 MM

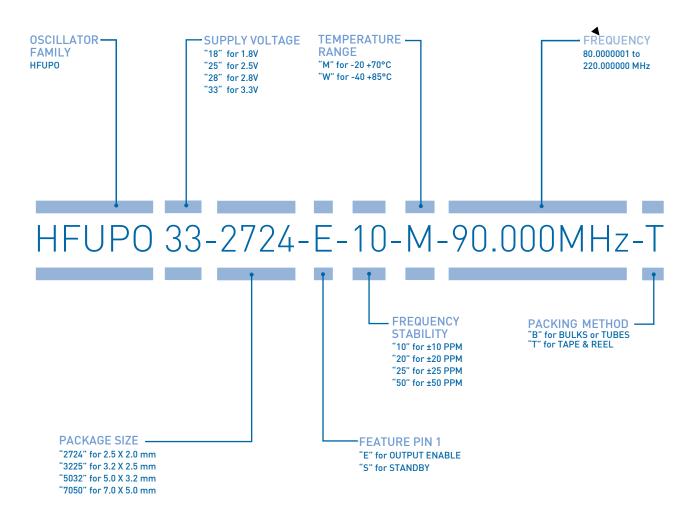


### RECOMMENDED LAND PATTERN (UNIT:MM)



### **REFLOW SOLDER PROFILE**




| IPC/JEDEC Standard                  | IPC/JEDEC J-STD-020 |  |  |
|-------------------------------------|---------------------|--|--|
| Moisture Sensitivity Level          | Level 1             |  |  |
| TS MAX to TL (Ramp-up Rate)         | 3°C/second Maximum  |  |  |
| Preheat                             |                     |  |  |
| - Temperature Minimum (TS MIN)      | 150°C               |  |  |
| - Temperature Typical (TS TYP)      | 175°C               |  |  |
| - Temperature Typical (TS MAX)      | 200°C               |  |  |
| - Time (tS)                         | 60 - 180 Seconds    |  |  |
| Ramp-up Rate (TL to TP)             | 3°C/second Maximum  |  |  |
| Time Maintained Above:              |                     |  |  |
| - Temperature (TL)                  | 217°C               |  |  |
| - Time (TL)                         | 60 - 150 Seconds    |  |  |
| Peak Temperature (TP)               | 260°C Maximum       |  |  |
| Target Peak Temperature (TP Target) | 255°C               |  |  |
| Time within 5°C of actual peak (tP) | 20 -40 Seconds      |  |  |
| Max. Number of Reflow Cycles        | 3                   |  |  |
| Ramp-down Rate                      | 6°C/second Maximum  |  |  |
| Time 25°C to Peak Temperature (t)   | 8 minutes Maximum   |  |  |

## Note:

8. A capacitor value of 0.1  $\mu F$  between VDD and GND is recommended.



## ORDERING INFORMATION



#### Note:

9. Contact PETERMANN-TECHNIK for custom drive strength to drive higher or multiple load, or for EMI reduction.

EXAMPLE: HFUP033-2724-E-10-M-90.000MHz-T PLEASE INDICATE YOUR REQUIRED PARAMETERS

EXPRESS SAMPLES ARE DELIVERABLE ON THE SAME DAY IF ORDERED UNTIL 02:00 PM!







# PREMIUM QUALITY BY PETERMANN-TECHNIK



OUR COMPANY IS CERTIFIED ACCORDING TO ISO 9001:2008 IN OCTOBER 2013 BY THE DMSZ CERTIFIKATION GMBH.

THIS IS FOR YOU TO ENSURE THAT THE PRINCIPLES OF QUALITY MANAGEMENT ARE FULLY IMPLEMENTED IN OUR QUALITY MANAGEMENT SYSTEM AND QUALITY CONTROL METHODS ALSO DOMINATE OUR QUALITY STANDARDS.

© PETERMANN-TECHNIK GmbH 2014. The information contained herein is subject to change at any time without notice. PETERMANN-TECHNIK owns all rights, title and interest to the intellectual property related to PETERMANN-TECHNIK's products, including any software, firmware, copyright, patent, or trademark. The sale of PETERMANN-TECHNIK products does not convey or imply any license under patent or other rights. PETERMANN-TECHNIK retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by PETERMANN-TECHNIK. Unless otherwise agreed to in writing by PETERMANN-TECHNIK, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.